

ACCOUNTING FOR EMISSIONS FROM AGRICULTURE, FORESTRY, AND OTHER LAND USE ACTIVITIES

2014

FELIPE CASARIM AND LARA MURRAY

WINROCK INTERNATIONAL

PRESENTATION OVERVIEW

- 1. Introduction to climate change and emissions from land use sector
- 2. Basic approach to calculating emissions from land use change
- 3. International climate negotiations and accounting standards
- 4. IPCC Tiers
- 5. Rationale for developing the AFOLU Carbon Calculator

LAND USE AND CLIMATE CHANGE

Carbon is emitted to the atmosphere when:

 Forests are cleared or disturbed
 G a Fire legging

e.g. Fire, logging

- Soils are disturbed e.g. tilling croplands, draining peat soils
- Fossil fuel use

Carbon is removed from the atmosphere through:

- Photosynthesis
- Creation and burial of hydrocarbons and coal
- Ocean absorption

EMISSIONS FROM LAND USE AND LAND USE CHANGE

Global greenhouse gas emissions by economic sectors, 2010

WINROCK

NTERNATIONAL

Tropical deforestation ~10% of GHG emissions (Harris et al., 2012).

However, mitigating emissions from forest loss is relatively quick, and inexpensive in stabilizing and reducing CO₂ emissions. (Parrotta et al., 2012)

LAND USE AND CLIMATE CHANGE

Mitigating climate change: land use activities

Reducing deforestation and forest degradation

- Forest conservation
- Fire management
- Combatting illegal logging
- Improving timber harvesting practices
- Improving efficiency of fuelwood and charcoal usage in rural and urban centers

Increasing forest cover and productivity

- Forest restoration
- Agroforestry
- Afforestation/Reforestation
 - · Homogeneous stands
- Heterogeneous stands

Climate-Smart Agriculture and Land Management

- Adopting practices that increase productivity, resilience, and reduce/remove GHGs:
- Reduced tilling to lower CO₂ emissions from disturbed soil
- Promoting permanent crops to reduce emissions from slash and burn farming
- Reduced fertilizer inputs to reduce runoff and N₂O emissions
- Livestock management to mitigate enteric fermentation and CH₄ emissions
- Improved production efficiency

SO HOW TO ACCOUNT FOR CO2 BENEFITS FROM AFOLU PROJECTS?

Peru: The Initiative for Conservation in the Andean Amazon – Madre de Dios

Man data @2014 Google_INEGI_Inav/Geosisten

Colombia: BIOREDD

-14 REDD+ Projects totaling over 1 million ha
-agricultural intensification
-ecological restoration through A/R
-Sustainable forest and land use management

Activity Data

X

"Data on the magnitude of human activity... taking place during a given period of time" – IPCC

- Deforestation rate
- Area planted with native species
- Volume of timber extracted
- Number of animals raised
- Fertilizer input to crop lands

Emission/Removal Factors

"The average emission rate of a given greenhouse gas... relative to units of activity" – IPCC

- Carbon stocks of cleared forests
- Carbon accumulation rate
 of native forests
- Dead wood created to extract a cubic meter of timber
- Volatilization/Oxidation rate of fertilizers

HOW ARE CO₂ BENEFITS CALCULATED?

Activity Data: Which changes occurred? Which changes would have occurred in the absence of the project? Where? On how many hectares? High area loss High C stocks **High emissions** Low area loss High C stocks Intermediate to High Emissions

Emission/Removal Factors: How much carbon was emitted/removed per unit of area change? How much carbon would have been emitted/removed per unit area of change?

High area loss Low C stocks Low to intermediate emissions

Low area loss Low C stocks Low emissions

HOW DO I DEVELOP EMISSION FACTORS AND ACTIVITY DATA?

United Nations Framework Convention on Climate Change International environmental treaty with the objective to "stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system."

Intergovernmental Panel on Climate Change – UNFCCC's scientific, technical, and socioeconomic body that advises the UN on climate change assessment and mitigation.

ACCOUNTING FOR LAND USE EMISSIONS

2003: Good Practice Guidance for Land use, Land-Use Change and Forestry (GPG-LULUCF) produced by IPCC

2003: Parties agreed that Annex I Parties should use the GPG-LULUCF for preparing their GHG inventories in national communications under the UNFCCC. Non-Annex I Parties encouraged to use it.

2006: IPCC Guidelines for National Greenhouse Inventories, Volume 4 'Agriculture, Forestry, and Other Land Use (AFOLU)' replace GPG-LULUCF as the standard guidelines

IPCC 'TIERS'

Three methodological tiers representing different levels of complexity.

<u>Tier 1:</u> Basic method. Uses default values for broad continental default values provided in LULUCF and AFOLU guidelines. Large uncertainties.

<u>Tier 2:</u> Approach using country-specific data (e.g. from field measurements). Smaller uncertainties.

<u>Tier 3:</u> Approach using data at a finer resolution or detailed modeling (e.g. comprehensive field sampling repeated at regular time intervals, soils data, and use of locally calibrated models)

EXAMPLES OF ACTIVITY DATA AND EMISSION FACTORS

Approach for activity data:	Tiers for emission factors:
Area change	change in C stocks
 Non-spatial country statistics (e.g.	 IPCC default values at a
FAO) — generally gives net	continental scale-high
change in forest area	uncertainty
2. Based on maps, surveys, and other national statistical data	 Country specific data for key factors—medium to low uncertainty
3. Spatially specific data from	3. National inventory of key
interpretation of remote sensing	carbon stocks, repeated
data-only approach to use for	measurements or modeling —
deforestation and degradation	medium to low uncertainty

EXAMPLE OF TIER 1 DATA

From IPCC Guidelines for National Greenhouse Inventories, Volume 4 'Agriculture, Forestry, and Other Land Use (AFOLU)'

TABLE 4.12 Tier 1 estimated biomass values from tables 4.7–4.11 (Except Table 4.11B) (Values are approximate. Use only for Tier 1)						
Climate Domain	Ecological Zone	Aboveground biomass in natural forests	Aboveground biomass in forest plantations	Aboveground net biomass growth in natural forests	Ab oveground net biomass growth in forest plantations	
		(tonnes dry matter ha ⁻¹)	(tonnes dry matter ha ⁻¹)	(tonnes dry matter ha ⁻¹ y ⁻ ¹)	(tonnes dry matter ha ⁻¹ y ⁻ ¹)	
Tr opical	Tropical rain forest	300	150	7	15	
	Tropical moist deciduous forest	180	120	5	10	
	Tropical dry forest	130	60	2.4	8	
	Tropical shrubland	70	30	1	5	
	Tropical mountain systems	140	90	1	5	
Sub tr opical	Subtropical humid forest	220	140	5	10	
	Subtropical dry forest	130	60	2.4	8	
	Subtropical steppe	70	30	1	5	
	Subtropical mountain systems	140	90	1	5	
Temperate	Temperate oceanic forest	180	160	4.4	4.4	
	Temperate continental forest	120	100	4	4	
	Temperate mountain systems	100	100	3	3	
Boreal	Boreal coniferous forest	50	40	1	1	
	Boreal tundra woodland	15	15	0.4	0.4	
	Boreal mountain systems	30	30	1	1	

EXAMPLE OF TIER 2 DATA

Saatchi, SS, Harris, NL, Brown, S, Lefsky, M, Mitchard, ETA, Salas, W, Zutta, BR, Buermann, W, Lewis, SL, Hagen, S, Petrova, S, White, L, Silman, M & Morel, A 2011, "<u>Benchmark map of forest carbon stocks in</u> <u>tropical regions across three continents</u>" Proceedings of the National Academy of Sciences of the United States of America - PNAS, vol 108, no. 24, pp. 9899-9904., <u>10.1073/pnas.1019576108</u>

EXAMPLE OF TIER 3 DATA

- Measurements of carbon pools are recorded in the field
- Models and conversion factors are used to estimate carbon stocks in each major pool based on field measurements
- Statistical analysis is used to calculate average forest carbon stocks based on plot data

AFOLU CARBON CALCULATOR

- Employs IPCC approaches and data or better!
- Much of default data is IPCC tier 2
 - Allows user to enter site-specific data
- Subnational unit resolution of data allows for finer resolution estimates
- Methods and data peer reviewed and transparently documented

For questions and comments:

AFOLU Carbon Calculator: <u>help@afolucarbon.org</u>

Felipe Casarim: <u>fcasarim@winrock.org</u> Lara Murray: <u>Imurray@winrock.org</u> Tim Pearson: <u>tpearson@winrock.org</u> Sandra Brown: <u>sbrown@winrock.org</u>

